El secreto de la vida… otra vez

El secreto de la vida… otra vez Imagen superior: Photophilde, CC

¿Qué es explicar? Un querido y admirado amigo, el biólogo, filósofo e historiador de la ciencia (además de poetaCarlos López Beltrán, dijo una vez que una explicación es “algo que nos deja satisfechos”. (“Epistémicamente satisfechos”, dirían sus colegas filósofos; una explicación es lo que satisface nuestro apetito por entender.)

Habría que definir entonces qué es entender. Y notar que el significado de “entender” depende del punto de vista del entendedor.

Un caso concreto en que se observa esto es cuando se oye hablar a un físico sobre la biología. Las explicaciones bioquímicas, anatómico-fisiológicas o evolucionistas que para un biólogo resultan perfectamente útiles y satisfactorias, para un físico pueden resultar meras formas de ponerle nombre a algo que sigue sin ser entendido “a fondo”. Y es que para un físico, “a fondo” significa a nivel de leyes, partículas y fuerzas fundamentales de la naturaleza.

Pues bien: en 2013 un joven físico del Instituto Tecnológico de Massachusetts (MIT), Jeremy England, hizo una propuesta teórica (retomada y comentada en la revista Business Insider) para explicar “el secreto de la vida”: la razón detrás de la sorprendente tendencia de los organismos vivos para, a diferencia de lo que ocurre con el resto de la materia, formar estructuras organizadas y hacer copias de éstas. En algún momento la respuesta a este enigma fue una misteriosa “fuerza vital”; hoy proviene de la fisicoquímica.

La pregunta surge del hecho, bien conocido desde hace tiempo, de que los sistemas vivos parecen violar la segunda ley de la termodinámica, una de las leyes fundamentales del universo, que en esencia dice que en todo proceso el desorden de un sistema tiende a aumentar (en términos técnicos, que la entropía, propiedad fisicoquímica de los sistemas que indica qué tan dispersas están la energía y la materia, se incrementa siempre). Esto explica, entre otras cosas, la “flecha del tiempo”: el hecho de que tantos procesos ocurran espontáneamente en una dirección, pero no en la otra (el café se enfría, el escritorio se desordena, las cosas se rompen… nunca lo contrario).

A su vez, la segunda ley se explica porque, para un sistema dado, existen muchas más maneras distintas de estar desordenado que de estar ordenado. Por ello, es mucho más probable que al cambiar se desordene. En el fondo, el aumento de la entropía es una propiedad estadística.

¿Cómo es, entonces, que los seres vivos toman constantemente materia y energía de sus alrededores y las convierten en estructuras más ordenadas, al crecer y al reproducirse, formando copias de sí mismos? La respuesta estándar es que disminuyen su entropía al costo de aumentar la de sus alrededores. Pero no es una respuesta precisa, cuantitativa, como les gusta a los físicos. El problema es que la segunda ley sólo se aplica a sistemas cerrados –de los que no entra ni sale energía ni materia– y en equilibrio. Los seres vivos no son ni lo uno ni lo otro. Durante décadas, las ecuaciones de la termodinámica no se lograron aplicar a sistemas así.

En los años sesenta el fisicoquímico (y vizconde) ruso-belga Ilya Prigogine, que en 1977 recibiría el premio Nobel de química por su trabajo, avanzó en explicar la termodinámica de sistemas abiertos y ligeramente alejados del equilibrio, en los que hay una entrada modesta de energía, como ciertos remolinos que se observan en líquidos calentados. Pero no fue sino hasta finales de los noventa que se logró entender mejor qué ocurre en sistemas abiertos muy alejados del equilibrio (como son las plantas que captan la intensa energía del sol, y en general los seres vivos).

Lo que hace England en su propuesta, publicada en la revista Journal of Chemical Physics, es aplicar estos últimos desarrollos para proponer un modelo matemático abstracto y general –aplicable a cualquier sistema, no sólo a seres vivos– de un sistema abierto lejos del equilibrio, que recibe energía y puede disiparla en el ambiente por medio de su propia replicación (reproducción; “hacer copias de uno mismo es una gran forma de disipar energía”, explica England). A partir de ello, calcula el límite teórico mínimo de la cantidad de energía que un sistema debería disipar al replicarse.

La propuesta de England implica que la razón fundamental detrás de la evolución y la vida sería la tendencia de la materia a formar sistemas que disipen energía cada vez más eficientemente en el ambiente. En sus propias palabras, “si empiezas con un montón de átomos al azar y lo iluminas durante el tiempo suficiente, no debería sorprenderte que obtengas una planta”. Se trataría de un proceso físico necesario, no una extraña casualidad cósmicamente improbable.

Las ideas de England son novedosas e importantes, porque ayudan a establecer “las limitaciones físicas generales que obedece la selección natural en sistemas fuera del equilibro”, como escribe en su artículo. También podrían ayudar a entender ciertos fenómenos biológicos que la evolución no explica completamente, además de poderse aplicar a otros sistemas no vivos que también presentan autoorganización y replicación, como cristales, remolinos y ciertas reacciones químicas. Asimismo, de ser confirmadas, harían que la posibilidad de hallar vida en otros mundos aumentara drásticamente, pues se trataría ya no de una serie de afortunadas coincidencias, sino de un fenómeno casi necesario.

Aunque debo confesar que, en lo personal, me llama un poco la atención la manera en que los físicos la comentan. “Me hace pensar que la distinción entre materia viva e inanimada no es tan tajante”, afirma uno (aunque cualquiera que sepa un poco de fisicoquímica y evolución molecular lo hallaría obvio); otro dice, con cierta condescendencia, frecuente en los físicos cuando se dirigen a biólogos, “Podría liberar a los biólogos de buscar explicaciones darwinianas para cada adaptación y permitirles pensar en forma más general”.

No cabe duda: lo que para unos es una explicación satisfactoria, para otros no lo es. Lo que ya sabíamos es que los seres vivos no necesitan violar las leyes físicas del universo para existir. Lo que estamos descubriendo es cómo: logran vivir disipando energía de manera cada vez más eficiente.

Copyright © Martín Bonfil Olivera. Publicado previamente en Milenio Diario. Reservados todos los derechos.

Martín Bonfil Olivera

Martín Bonfil Olivera, mexicano, es químico farmacéutico biólogo y estudió la maestría en enseñanza e historia de la biología de la Facultad de Ciencias, ambas en la UNAM.

Desde 1990 se ha dedicado a la divulgación de la ciencia por escrito. Colaboró en los proyectos del museo de ciencias Universum y el Museo de la Luz, de la UNAM. Es autor de varios libros de divulgación científica y hasta 2008 fue editor de libros y del boletín El muégano divulgador.

Ha sido  profesor de la Facultad de Ciencias de la UNAM y la Escuela de Periodismo Carlos Septién García. Ha colaborado regularmente en varias revistas (Milenio, Cambio, Los universitarios) y periódicos (La Jornada, Crónica, Reforma). Actualmente escribe la columna semanal “La ciencia por gusto”, que aparece los miércoles en Milenio Diario (puede consultarse en el blog La Ciencia por Gusto), además de escribir mensualmente la columna “Ojo de mosca” para la revista ¿Cómo ves?

Ha colaborado también en el canal ForoTV y en los programas de radio Imagen en la Ciencia e Imagen Informativa, de Grupo Imagen, Hoy por hoy, de W Radio, y actualmente Ecléctico, en la estación de radio por internet Código Radio, del gobierno del DF, con cápsulas de ciencia.

En 2004 publicó el libro La ciencia por gusto, una invitación a la cultura científica (Paidós). Desde 2013 es miembro del comité editorial de la revista de divulgación científica Hypatia, del Consejo de Ciencia y Tecnología del Estado de Morelos (CCyTEM).

En 2005 recibió la Distinción Universidad Nacional para Jóvenes Académicos en el área de Creación Artística y Extensión de la Cultura.

Ha impartido numerosos cursos de divulgación escrita en casi todos los Estados de la República Mexicana.

Sitio Web: sites.google.com/site/mbonfil/

Social Profiles

logonegrolibros

  • La infidelidad del guionista
    Escrito por
    La infidelidad del guionista En todos mis libros, aunque traten de temas muy diferentes, existen muchos nexos, como supongo que le pasa a cualquier escritor. La mayoría son implícitos pero también hay bastantes explícitos; muchos surgen de forma espontánea,…
  • Borges el traidor
    Escrito por
    Borges el traidor En la nota dos a Los kenningar escribe Borges: “Dura palabra es traidor. Sturluson – quizá– era un mero fanático disponible, un hombre desgarrado hasta el escándalo por sucesivas y contrarias lealtades. En el orden…

logonegrociencia

Cosmos: A Spacetime Odyssey © Fox

  • Sobrenatural
    Sobrenatural La ciencia se dedica a estudiar la naturaleza. ¿Y qué es la naturaleza? Todo lo que existe a nuestro alrededor. Las ciencias naturales se concentran en el mundo físico: el cosmos, nuestro planeta, las sustancias…

Cartelera

Cine clásico

  • El pretendiente
    Escrito por
    El pretendiente Esa mirada melancólica, esos ojos grandes y tristes, esa sonrisa desvaída, esa timidez que se resuelve en silencio, esos movimientos gráciles como si pisaras un salón de baile, esas manos tibias que apenas se cambian…

logonegrofuturo2

Cosmos: A Spacetime Odyssey © Fox

logonegrolibros

bae22, CC

logonegromusica

Namlai000, CC

  • Victor Herbert, un inventor del glamour
    Escrito por
    Victor Herbert, un inventor del glamour El escritor argentino Manuel Puig decía que el glamour de Hollywood provenía de la Europa Central anterior a la guerra de 1914 y que bastaba con comprobarlo viendo la iluminación nocturna de Budapest. Podría agregarse…

logonegroecologia

Mathias Appel, CC

  • Tiburones
    Escrito por
    Tiburones Los primeros tiburones aparecieron en el planeta hace 300 millones de años. Su gran capacidad de adaptación les ha permitido llegar sin problemas hasta nuestros días. Actualmente se les encuentra en todos los océanos y…

logonegrofuturo2

Petar Milošević, CC