El secreto de la vida… otra vez

El secreto de la vida… otra vez Imagen superior: Photophilde, CC

¿Qué es explicar? Un querido y admirado amigo, el biólogo, filósofo e historiador de la ciencia (además de poetaCarlos López Beltrán, dijo una vez que una explicación es “algo que nos deja satisfechos”. (“Epistémicamente satisfechos”, dirían sus colegas filósofos; una explicación es lo que satisface nuestro apetito por entender.)

Habría que definir entonces qué es entender. Y notar que el significado de “entender” depende del punto de vista del entendedor.

Un caso concreto en que se observa esto es cuando se oye hablar a un físico sobre la biología. Las explicaciones bioquímicas, anatómico-fisiológicas o evolucionistas que para un biólogo resultan perfectamente útiles y satisfactorias, para un físico pueden resultar meras formas de ponerle nombre a algo que sigue sin ser entendido “a fondo”. Y es que para un físico, “a fondo” significa a nivel de leyes, partículas y fuerzas fundamentales de la naturaleza.

Pues bien: en 2013 un joven físico del Instituto Tecnológico de Massachusetts (MIT), Jeremy England, hizo una propuesta teórica (retomada y comentada en la revista Business Insider) para explicar “el secreto de la vida”: la razón detrás de la sorprendente tendencia de los organismos vivos para, a diferencia de lo que ocurre con el resto de la materia, formar estructuras organizadas y hacer copias de éstas. En algún momento la respuesta a este enigma fue una misteriosa “fuerza vital”; hoy proviene de la fisicoquímica.

La pregunta surge del hecho, bien conocido desde hace tiempo, de que los sistemas vivos parecen violar la segunda ley de la termodinámica, una de las leyes fundamentales del universo, que en esencia dice que en todo proceso el desorden de un sistema tiende a aumentar (en términos técnicos, que la entropía, propiedad fisicoquímica de los sistemas que indica qué tan dispersas están la energía y la materia, se incrementa siempre). Esto explica, entre otras cosas, la “flecha del tiempo”: el hecho de que tantos procesos ocurran espontáneamente en una dirección, pero no en la otra (el café se enfría, el escritorio se desordena, las cosas se rompen… nunca lo contrario).

A su vez, la segunda ley se explica porque, para un sistema dado, existen muchas más maneras distintas de estar desordenado que de estar ordenado. Por ello, es mucho más probable que al cambiar se desordene. En el fondo, el aumento de la entropía es una propiedad estadística.

¿Cómo es, entonces, que los seres vivos toman constantemente materia y energía de sus alrededores y las convierten en estructuras más ordenadas, al crecer y al reproducirse, formando copias de sí mismos? La respuesta estándar es que disminuyen su entropía al costo de aumentar la de sus alrededores. Pero no es una respuesta precisa, cuantitativa, como les gusta a los físicos. El problema es que la segunda ley sólo se aplica a sistemas cerrados –de los que no entra ni sale energía ni materia– y en equilibrio. Los seres vivos no son ni lo uno ni lo otro. Durante décadas, las ecuaciones de la termodinámica no se lograron aplicar a sistemas así.

En los años sesenta el fisicoquímico (y vizconde) ruso-belga Ilya Prigogine, que en 1977 recibiría el premio Nobel de química por su trabajo, avanzó en explicar la termodinámica de sistemas abiertos y ligeramente alejados del equilibrio, en los que hay una entrada modesta de energía, como ciertos remolinos que se observan en líquidos calentados. Pero no fue sino hasta finales de los noventa que se logró entender mejor qué ocurre en sistemas abiertos muy alejados del equilibrio (como son las plantas que captan la intensa energía del sol, y en general los seres vivos).

Lo que hace England en su propuesta, publicada en la revista Journal of Chemical Physics, es aplicar estos últimos desarrollos para proponer un modelo matemático abstracto y general –aplicable a cualquier sistema, no sólo a seres vivos– de un sistema abierto lejos del equilibrio, que recibe energía y puede disiparla en el ambiente por medio de su propia replicación (reproducción; “hacer copias de uno mismo es una gran forma de disipar energía”, explica England). A partir de ello, calcula el límite teórico mínimo de la cantidad de energía que un sistema debería disipar al replicarse.

La propuesta de England implica que la razón fundamental detrás de la evolución y la vida sería la tendencia de la materia a formar sistemas que disipen energía cada vez más eficientemente en el ambiente. En sus propias palabras, “si empiezas con un montón de átomos al azar y lo iluminas durante el tiempo suficiente, no debería sorprenderte que obtengas una planta”. Se trataría de un proceso físico necesario, no una extraña casualidad cósmicamente improbable.

Las ideas de England son novedosas e importantes, porque ayudan a establecer “las limitaciones físicas generales que obedece la selección natural en sistemas fuera del equilibro”, como escribe en su artículo. También podrían ayudar a entender ciertos fenómenos biológicos que la evolución no explica completamente, además de poderse aplicar a otros sistemas no vivos que también presentan autoorganización y replicación, como cristales, remolinos y ciertas reacciones químicas. Asimismo, de ser confirmadas, harían que la posibilidad de hallar vida en otros mundos aumentara drásticamente, pues se trataría ya no de una serie de afortunadas coincidencias, sino de un fenómeno casi necesario.

Aunque debo confesar que, en lo personal, me llama un poco la atención la manera en que los físicos la comentan. “Me hace pensar que la distinción entre materia viva e inanimada no es tan tajante”, afirma uno (aunque cualquiera que sepa un poco de fisicoquímica y evolución molecular lo hallaría obvio); otro dice, con cierta condescendencia, frecuente en los físicos cuando se dirigen a biólogos, “Podría liberar a los biólogos de buscar explicaciones darwinianas para cada adaptación y permitirles pensar en forma más general”.

No cabe duda: lo que para unos es una explicación satisfactoria, para otros no lo es. Lo que ya sabíamos es que los seres vivos no necesitan violar las leyes físicas del universo para existir. Lo que estamos descubriendo es cómo: logran vivir disipando energía de manera cada vez más eficiente.

Copyright © Martín Bonfil Olivera. Publicado previamente en Milenio Diario. Reservados todos los derechos.

Martín Bonfil Olivera

Martín Bonfil Olivera, mexicano, es químico farmacéutico biólogo y estudió la maestría en enseñanza e historia de la biología de la Facultad de Ciencias, ambas en la UNAM.

Desde 1990 se ha dedicado a la divulgación de la ciencia por escrito. Colaboró en los proyectos del museo de ciencias Universum y el Museo de la Luz, de la UNAM. Es autor de varios libros de divulgación científica y hasta 2008 fue editor de libros y del boletín El muégano divulgador.

Ha sido  profesor de la Facultad de Ciencias de la UNAM y la Escuela de Periodismo Carlos Septién García. Ha colaborado regularmente en varias revistas (Milenio, Cambio, Los universitarios) y periódicos (La Jornada, Crónica, Reforma). Actualmente escribe la columna semanal “La ciencia por gusto”, que aparece los miércoles en Milenio Diario (puede consultarse en el blog La Ciencia por Gusto), además de escribir mensualmente la columna “Ojo de mosca” para la revista ¿Cómo ves?

 Ha colaborado también en el canal ForoTV y en los programas de radio Imagen en la Ciencia e Imagen Informativa, de Grupo Imagen, Hoy por hoy, de W Radio, y actualmente Ecléctico, en la estación de radio por internet Código Radio, del gobierno del DF, con cápsulas de ciencia.

En 2004 publicó el libro La ciencia por gusto, una invitación a la cultura científica (Paidós). Desde 2013 es miembro del comité editorial de la revista de divulgación científica Hypatia, del Consejo de Ciencia y Tecnología del Estado de Morelos (CCyTEM).

En 2005 recibió la Distinción Universidad Nacional para Jóvenes Académicos en el área de Creación Artística y Extensión de la Cultura.

Ha impartido numerosos cursos de divulgación escrita en casi todos los Estados de la República Mexicana.

Sitio Web: sites.google.com/site/mbonfil/

Social Profiles

logonegrofinal0

Erik Shoemaker, CC

  • Los libros de autoayuda
    Escrito por
    Los libros de autoayuda En Un optimista es sólo un pesimista bien informado, dije que todo lo razonable del optimismo se veía comprometido por “la avalancha de libros de autoayuda más o menos simplistas que inundan las librerías”. Si…
  • Los sesos derretidos
    Los sesos derretidos Cuenta la historia que cuando Don Quijote daba voces a Sancho que le trujese el yelmo, estaba él comprando unos requesones que los pastores le vendían y, acosado de la mucha priesa de…

logonegrociencia

Maneed, CC

  • Responsabilidad
    Responsabilidad “Un gran poder conlleva una gran responsabilidad”, es el lema del Hombre Araña. Y pocas cosas hay en el mundo moderno que sean más poderosas que la ciencia y la tecnología. La historia del desarrollo…
  • Felipe II, rey de Inglaterra
    Escrito por
    Felipe II, rey de Inglaterra El 25 de julio de 1554 contraía matrimonio María Tudor, reina de Inglaterra, con Felipe de España, hijo del emperador Carlos V, futuro heredero del mayor imperio de la modernidad. Ambos estaban unidos por profundos…

Cartelera

Cine clásico

  • A la hora exacta
    Escrito por
    A la hora exacta Hay besos y besos. Un beso casi fraternal, de buenos días, con un Ray Milland algo tenso y una Grace Kelly muy puesta en su sitio. Un beso apasionado, con Robert Cummings soñoliento, quizá producto…

logonegrofuturo2

Josh Eiten, CC

logonegrolibros

Colgreyis, CC

logonegromusica

Namlai000, CC

  • Robert Fuchs, vienés y brahmsiano
    Escrito por
    Robert Fuchs, vienés y brahmsiano Robert Fuchs (1846-1927) vivió lo suficiente como para asistir a varios derrumbes: el imperio austrohúngaro, la paz octaviana de la Europa finisecular y la música tonal. Su extendida labor como pedagogo oscureció el resto de…

logonegroecologia

Somadjinn, CC

bannernewsletter1